

Focused on developing and commercializing novel therapies for rare endocrine disorders with significant unmet medical need

Virtual Research and Development Day Tildacerfont for Adult and Pediatric Classic CAH

August 25, 2021

FORWARD-LOOKING STATEMENTS

This presentation contains forward-looking statements about Spruce Biosciences, Inc. ("we," "Spruce" or the "Company"). All statements other than statements of historical facts contained in this presentation are forward-looking statements, including statements about our strategy, our expectations regarding the timing and achievement of our product candidate's development activities and ongoing and planned clinical trials, and plans and expectations for future operations. These forward-looking statements are subject to a number of risks, uncertainties and assumptions, including, but not limited to: the effects of the evolving and ongoing COVID-19 pandemic; our limited operating history; net losses; our expectation that we will incur net losses for the foreseeable future, and that we may never be profitable; our need for additional funding and related risks for our business, product development programs and future commercialization activities; the timing and success of clinical trials we conduct; the ability to obtain and maintain regulatory approval of our product candidate; the ability to commercialize our product candidate; our ability to compete in the marketplace; risks regarding our license agreement; our ability to obtain and maintain intellectual property protection for our product candidate; and our ability to manage our growth. We operate in a very competitive and rapidly changing environment. New risks emerge from time to time. It is not possible for our management to predict all risks, nor can we assess the impact of all factors on our business or the extent to which any factor, or combination of factors, may cause actual results to differ materially from those contained in any forward-looking statements we may make. In light of these risks, uncertainties and assumptions, the forward-looking events and circumstances discussed in this presentation may not occur and actual results could differ materially and adversely from those anticipated or implied in the forward-looking statements. Except as required by law, neither we nor any other person assumes responsibility for the accuracy and completeness of the forward-looking statements. We undertake no obligation to update publicly any forward-looking statements for any reason after the date of this presentation to conform these statements to actual results or to changes in our expectations.

Certain information contained in this presentation and statements made orally during this presentation relate to or are based on studies, publications, surveys and other data obtained from third-party sources and Spruce's own internal estimates and research. While Spruce believes these third-party studies, publications, surveys and other data to be reliable as of the date of this presentation, it has not independently verified, and makes no representations as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, no independent source has evaluated the reasonableness or accuracy of Spruce's internal estimates or research and no reliance should be made on any information or statements made in this presentation relating to or based on such internal estimates and research.

This presentation discusses a product candidate that is under clinical study and which has not yet been approved for marketing by the U.S. Food and Drug Administration. No representation is made as to the safety or effectiveness of this product candidate for the use for which it is being studied.

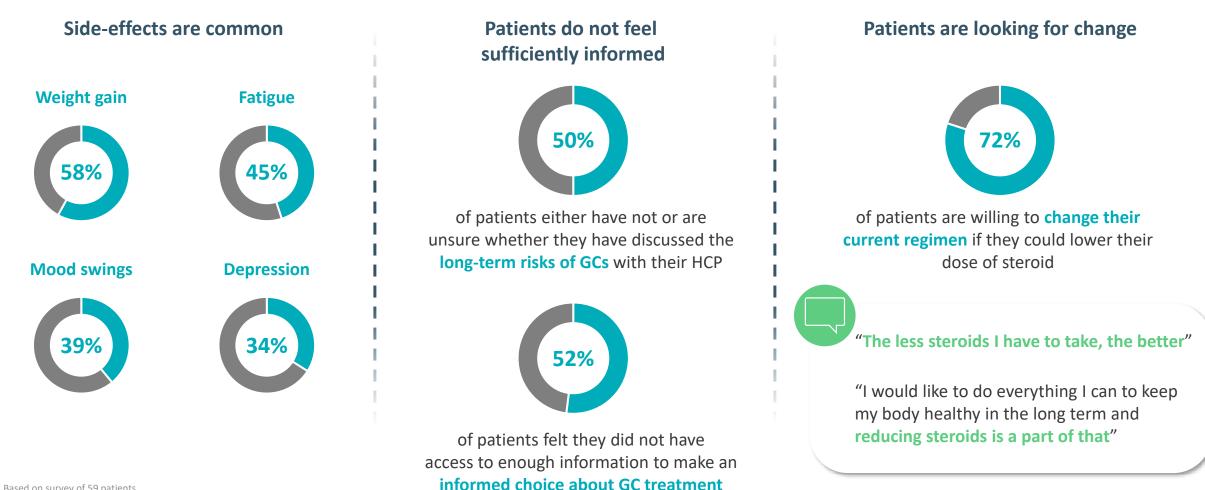
- Classic CAH Overview
- Management of CAH
- About Tildacerfont
- Phase 2 Adult Classic CAH Development Program
- Late-stage Adult Classic CAH Development Program
- KOL Panel Discussion
- Pediatric Classic CAH Overview
- Phase 2 Pediatric Classic CAH Development Program

Rosh Dias, MD, MRCP Chief Medical Officer Spruce Biosciences

> Rich Auchus, MD, PhD Professor of Internal Medicine and Pharmacology University of Michigan

Paul Thornton, MD Medical Director, Endocrine and Diabetes Program Cook Children's Hospital

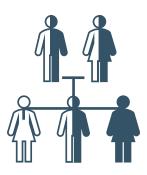
TODAY'S SPEAKERS


Richard King Chief Executive Officer Spruce Biosciences Chris Barnes, PhD VP, Biometrics and Project Leadership Spruce Biosciences

SPRUCE AT-A-GLANCE

Tildacerfont poised to transform treatment paradigm in classic CAH	Two late-stage clinical studies initiated; Data expected in 2022. NDA filing in adult classic CAH targeted for 2023	
Multiple expansion opportunities	Initiation of Phase 2 programs in pediatric classic CAH and polycystic ovary syndrome (PCOS) in 2H 2021	
Significant commercial opportunity	~\$3B+ worldwide market opportunity in classic CAH	
Strong IP protection	Comprehensive IP portfolio based on issued patents provides exclusivity to 2038 in U.S. combined with Orphan Drug Designation in U.S. and Europe	
hono Highly experienced leadership team	Management has contributed to development and commercial launch of 40 products, including within endocrine and rare disease space	

PATIENT VIEWS ON MANAGEMENT OF ADULT CAH


The vast majority of patients (>90%) report GCs are **effective in controlling CAH**, but...

Based on survey of 59 patients. CAH, congenital adrenal hyperplasia; GC, glucocorticoid; HCP, healthcare professional. Spruce Biosciences. Data on file.

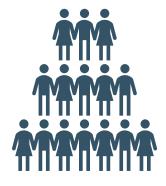
Classic CAH Overview

Congenital adrenal hyperplasia encompasses a group of rare **autosomal recessive disorders** of the adrenal cortex Genetic mutations cause deficiency in one or more key enzymes involved in adrenal steroidogenesis (cortisol synthesis)

OH

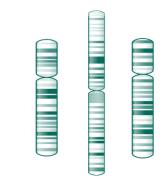

υOΗ

Clinical features are linked to cortisol deficiency and androgen excess



CYP21A2 MUTATION IS THE MOST COMMON CAUSE OF CAH

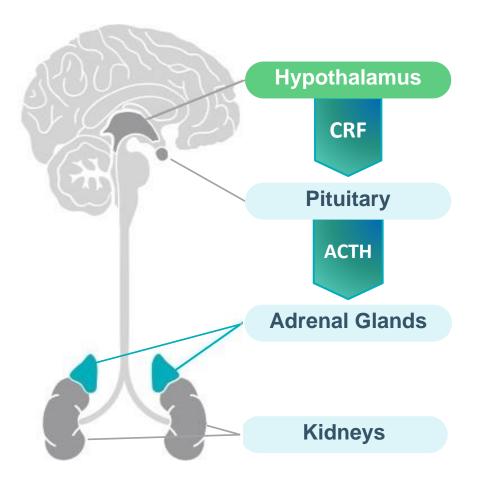
OF THE 21-OH DEFICIENT CAH SUBTYPES, CLASSIC IS MORE SEVERE


Classic 21-OHD CAH¹

More severe, life-threatening 1:18,000-10,000 births worldwide

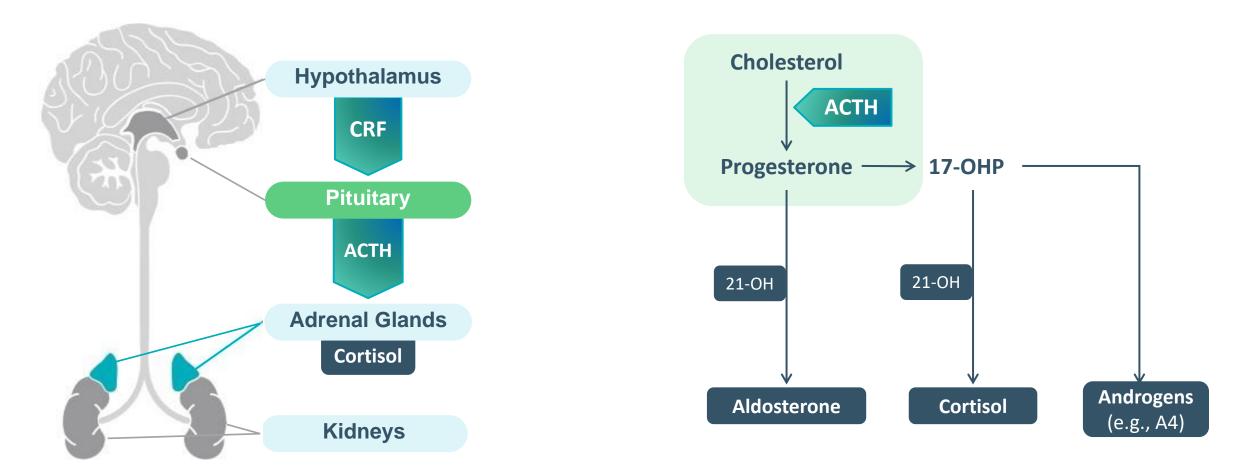
Non-classic 21-OHD CAH²

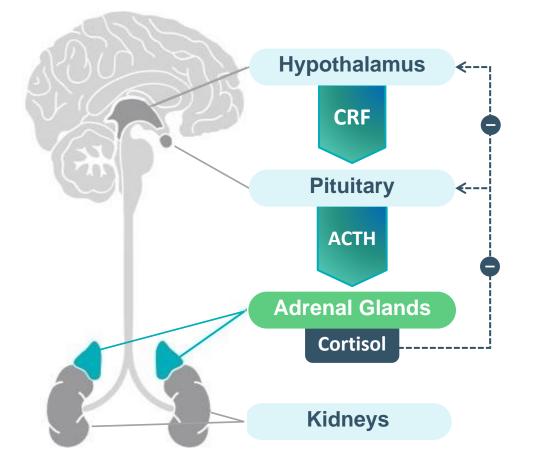
Less severe, not life-threatening 1:500-1:100 births worldwide

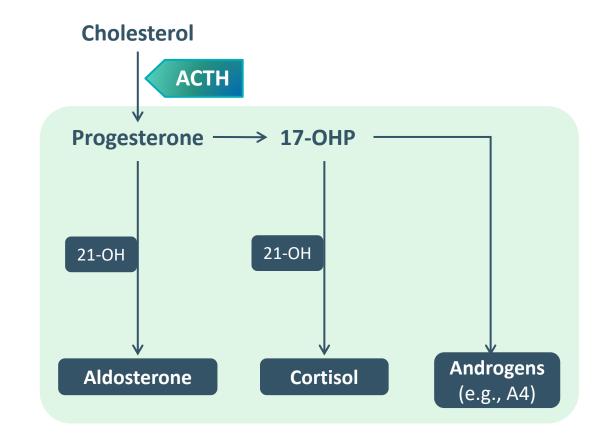

Other forms of CAH¹

CYP11B1 1:100,000 CYP17A1, HSD3B2, POR, STAR very rare

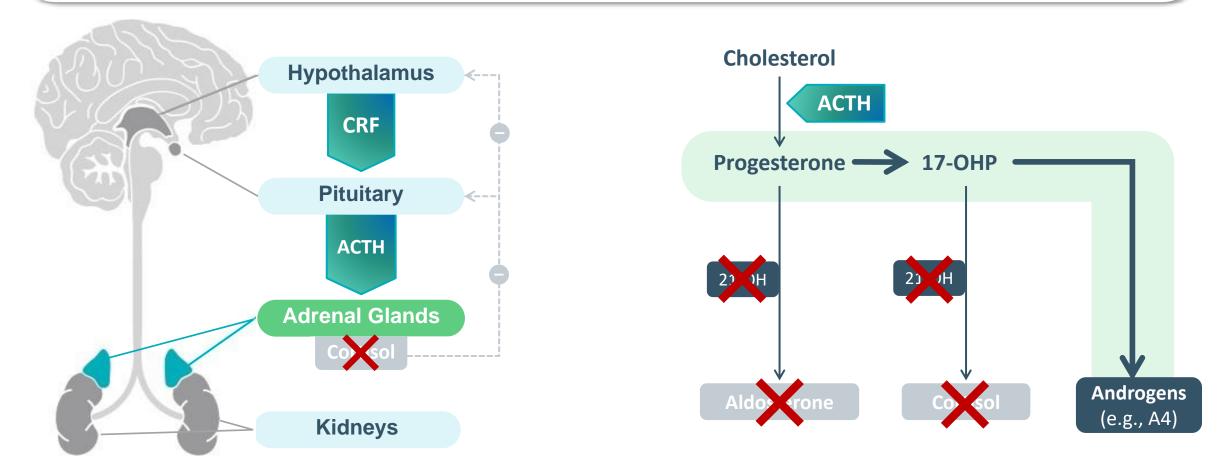
HPA AXIS FUNCTIONS AS A NEGATIVE FEEDBACK LOOP

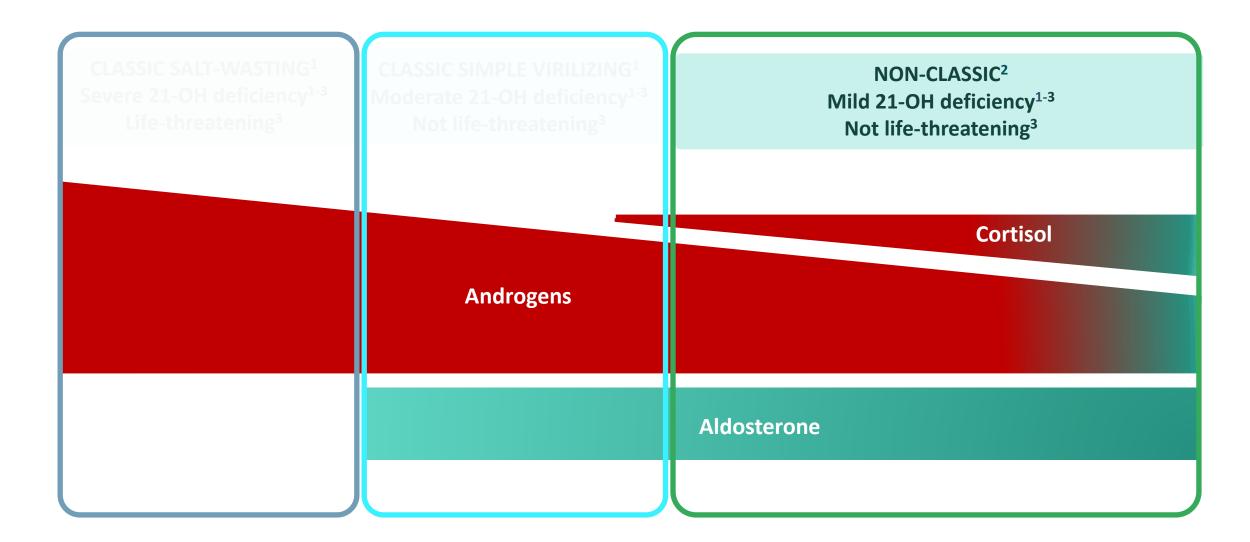

CRF from the hypothalamus stimulates the pituitary to produce ACTH


HPA AXIS FUNCTIONS AS A NEGATIVE FEEDBACK LOOP


ACTH from the pituitary stimulates steroid hormone biosynthesis within the adrenal glands

HPA AXIS FUNCTIONS AS A NEGATIVE FEEDBACK LOOP


The adrenal glands produce aldosterone, cortisol, and androgens; cortisol then supplies feedback to the hypothalamus and pituitary to slow ACTH production


21-OHD CAH: LOSS OF NEGATIVE FEEDBACK

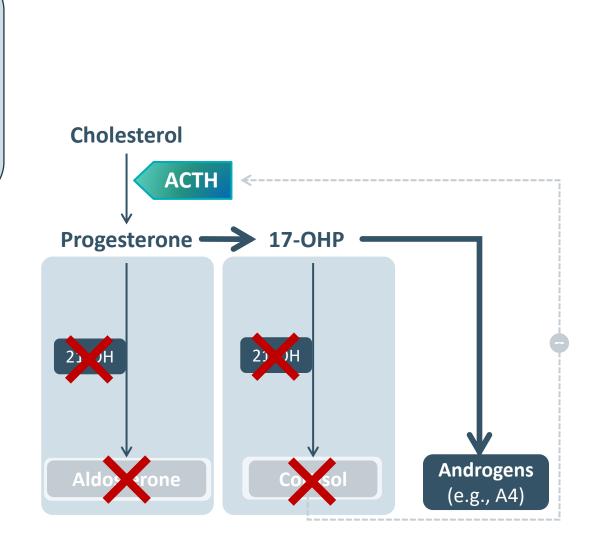
- Deficiency in 21-OH prevents cortisol production, & reduces or prevents aldosterone production
- Lack of cortisol upregulates CRF & ACTH, which leads to overstimulation & hyperplasia of the adrenal glands
- 17-OHP is routed to the androgen pathway, resulting in excess androgens

17-OHP, 17-hydroxyprogesterone; 21-OH, 21-hydroxylase; 21-OHD, 21-hydroxylase deficient; ACTH, adrenocorticotropic hormone; CAH, congenital adrenal hyperplasia; CRF, corticotropin releasing factor; HPA, hypothalamic-pituitaryadrenal. Engels M, *et al. Endocr Rev.* 2019;40:973-87.

21-OHD CAH IS CLASSIFIED BY DEGREE OF HORMONE IMBALANCE¹⁻³

21-OH, 21-hydroxylase ; 21-OHD, 21-hydroxylase deficient; CAH, congenital adrenal hyperplasia.

1. Claahsen-van der Grinten H, et al. Endocr Rev. 2021;bnab016. DOI: <u>https://doi.org/10.1210/endrev/bnab016</u> [Epub ahead of print]; 2. Nordenstrom A, et al. Eur J Endocrinol. 2019;180:R127-45; 3. What are the symptoms of CAH? NIH NICHD website. Updated May 17, 2021. Accessed July 3, 2021. https://www.nichd.nih.gov/health/topics/cah/conditioninfo/symptoms.



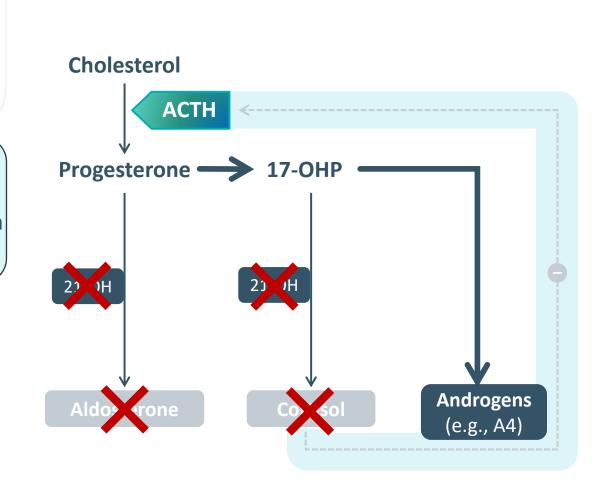
HORMONE IMBALANCES ARE CHARACTERISTIC OF 21-OHD CAH

POSSIBLE ALDOSTERONE DEFICIENCY¹

Causes salt-wasting CAH, with acute adrenal crisis
 Hypotension, hyponatremia, hyperkalemia, acidosis
 CORTISOL DEFICIENCY¹

Present in both salt-wasting & simple virilizing CAH
 Impaired circadian rhythm & stress response
 Excess ACTH production in response to low cortisol

HORMONE IMBALANCES ARE CHARACTERISTIC OF 21-OHD CAH


POSSIBLE ALDOSTERONE DEFICIENCY

Causes salt-wasting CAH, causes acute adrenal crisis Hypotension, hyponatremia, hyperkalemia, acidosis **CORTISOL DEFICIENCY¹**

Present in both salt-wasting & simple virilizing CAH
 Impaired circadian rhythm & stress response
 Excess ACTH production in response to low cortisol

OVERPRODUCTION OF ACTH²

Present in both salt-wasting & simple virilizing CAH
 Causes adrenal hyperplasia & excess androgen production
 Leads to TARTs in males

17-OHP, 17-hydroxyprogesterone; 21-OH, 21-hydroxylase; 21-OHD, 21-hydroxylase deficient; ACTH, adrenocorticotropic hormone; CAH, congenital adrenal hyperplasia; TART, testicular adrenal rest tumor. 1. Claahsen-van der Grinten H, *et al. Endocr Rev.* 2021;bnab016. DOI: <u>https://doi.org/10.1210/endrev/bnab016</u> [Epub ahead of print]; 2. Engels M, *et al. Endocr Rev.* 2019;40:973-987.

HORMONE IMBALANCES ARE CHARACTERISTIC OF 21-OHD CAH

POSSIBLE ALDOSTERONE DEFICIENCY¹

Causes salt-wasting CAH, causes acute adrenal crisis Hypotension, hyponatremia, hyperkalemia, acidosis CORTISOL DEFICIENCY¹

Present in both salt-wasting & simple virilizing CAH
 Impaired circadian rhythm & stress response
 Excess ACTH production in response to low cortisol

OVERPRODUCTION OF ACTH²

Present in both salt-wasting & simple virilizing CAH
 Causes adrenal hyperplasia & excess androgen production
 Leads to TARTs in males

OVERPRODUCTION OF ANDROGENS¹

Cause of virilizing features of both SW & SV CAH
 Virilization of external genitalia in females
 Precocious puberty, irregular menses, impaired fertility
 Acne, hirsutism
 Early growth spurt, premature epiphyseal closure

17-OHP, 17-hydroxyprogesterone; 21-OH, 21-hydroxylase; 21-OHD, 21-hydroxylase deficient; ACTH, adrenocorticotropic hormone; CAH, congenital adrenal hyperplasia; TART, testicular adrenal rest tumor. 1. Claahsen-van der Grinten H, *et al. Endocr Rev*. 2021;bnab016. DOI: <u>https://doi.org/10.1210/endrev/bnab016</u> [Epub ahead of print]; 2. Engels M, *et al. Endocr Rev*. 2019;40:973-987.

DIAGNOSIS OF 21-OHD CAH

NEWBORN SCREENING for classic CAH¹

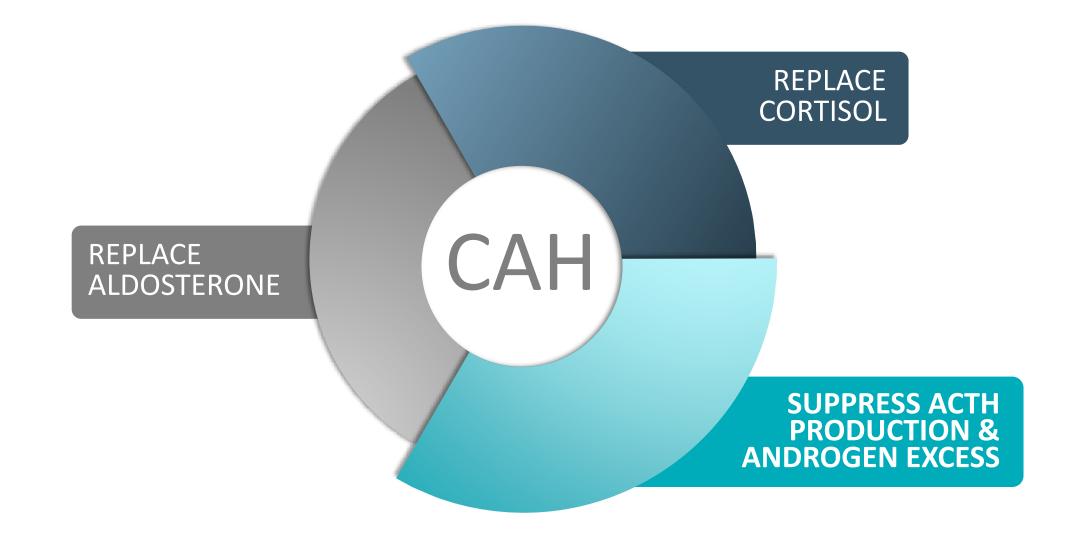
Routine in over 50 countries and all 50 states, to prevent neonatal adrenal crisis

- Detects elevated 17-OHP in the blood
- >> Positive result requires confirmatory testing with serum 17-OHP and cortisol levels

LABORATORY TESTING for later-onset CAH²

- Non-classic CAH is often not detected on newborn screening
- Morning 17-OHP blood level with or without ACTH stimulation test generally diagnostic
- Senetic testing for *CYP21A2* mutations if hormone levels are non-diagnostic

PRENATAL DIAGNOSIS for carriers¹


- >> Indicated when prior children have CAH
- >> Fetal hormone levels and DNA can be analyzed from amniotic fluid
- Fetal DNA analysis is also performed via chorionic villus sampling

Management of CAH

MANAGEMENT OF CLASSIC CAH IS A THREE-PRONGED APPROACH

ALDOSTERONE IS REPLACED TO MAINTAIN FLUID & ELECTROLYTE BALANCE

Mineralocorticoids are required in infancy, but the need lessens through adolescence and adulthood^{1,2}

GOALS OF THERAPY¹

Maintain acid-base balance MINERALOCORTICOIDS

Normalize blood pressure

Prevent salt-wasting crisis

Maintain euvolemia

Balance electrolytes

Fludrocortisone 0.05-0.2 mg/d

TREATMENT **GUIDELINES²**

SODIUM CHLORIDE 1-2 g/day in infancy

LOW DOSE HYDROCORTISONE REPLACES PHYSIOLOGIC CORTISOL

 Choice of GC is not limited to HC; other GCs, including prednisone and dexamethasone, may be prescribed.

CAH, congenital adrenal hyperplasia; d, day; HC, hydrocortisone; mg, milligram. 1. Claahsen-van der Grinten H, et al. Endocr Rev. 2021;bnab016. DOI: https://doi.org/10.1210/endrev/bnab016 [Epub ahead of print]; 2. Bornstein S, et al. J Clin Endocrinol Metab. 2016;101:364-89.

HIGHER DOSES OF GC ARE REQUIRED TO SUPRESS ACTH & ANDROGENS

GOALS OF THERAPY¹ **Slow** skeletal maturation

Prevent virilization

Normalize pubertal progression

Preserve reproductive function

Prevent TARTs

TARTs¹ Supraphysiologic dexamethasone

ADULT²

HC 15-25 mg/d or equivalent long-acting GC

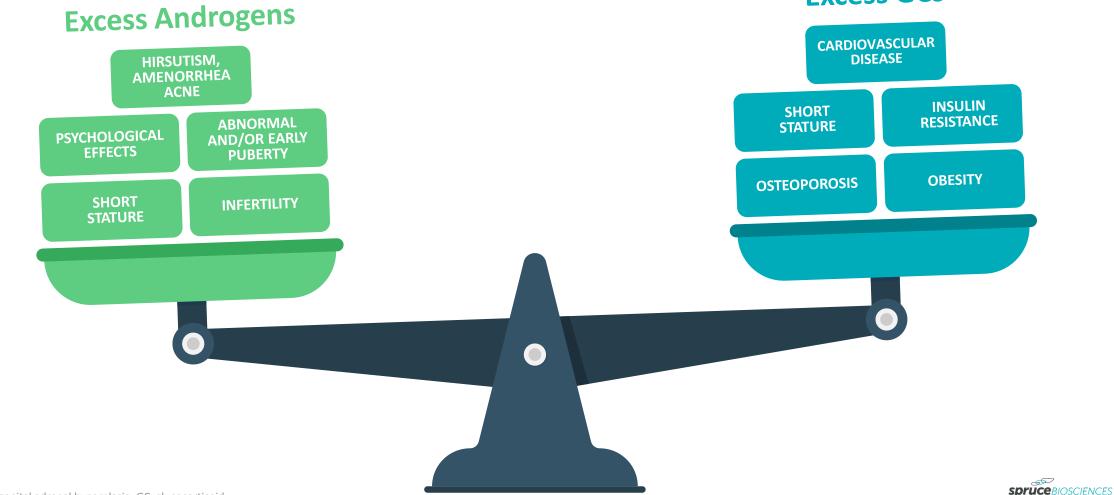
GROWING CHILD/ADOLESCENT²

HC 10-15 mg/m²/d - higher doses may be needed during puberty

ADJUVANT THERAPY²

AR antagonists OCPs

ACTH, adrenocorticotropic hormone; AR, androgen receptor; GC, glucocorticoid; HC, hydrocortisone; mg, milligram; OCP, oral contraceptive pill; TART, testicular adrenal rest tumor. 1. Claahsen-van der Grinten H, et al. Endocr Rev. 2021;bnab016. DOI: https://doi.org/10.1210/endrev/bnab016 [Epub ahead of print]; 2. Speiser P, et al. J Clin Endocrinol Metab. 2018;103:4043-88.

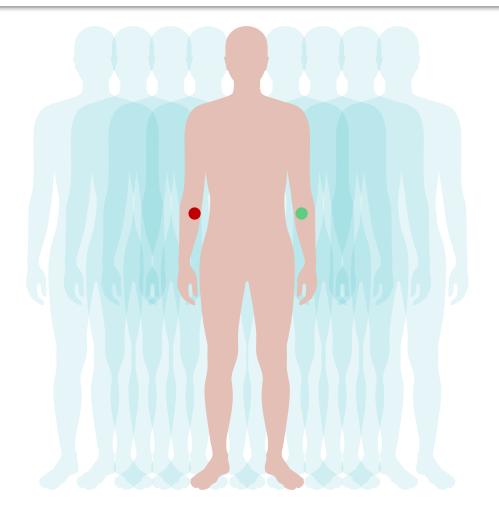


TREATMENT

GUIDELINES²

THIS PRESENTS A DIFFICULT CHOICE IN TREATING CLASSIC CAH

Patients and physicians must choose between the detrimental effects of chronically high adrenal androgen levels or the harmful consequences of excessive, life-long GC use



Excess GCs

25

UNMET MEDICAL NEEDS ACCORDING TO DISEASE STATUS

The management of classic CAH requires a balance between adrenal hormone suppression and GC replacement^{1,2}

UNMET MEDICAL NEEDS ACCORDING TO DISEASE STATUS

The management of classic CAH requires a balance between adrenal hormone suppression and GC replacement^{1,2}

GOOD DISEASE CONTROL¹

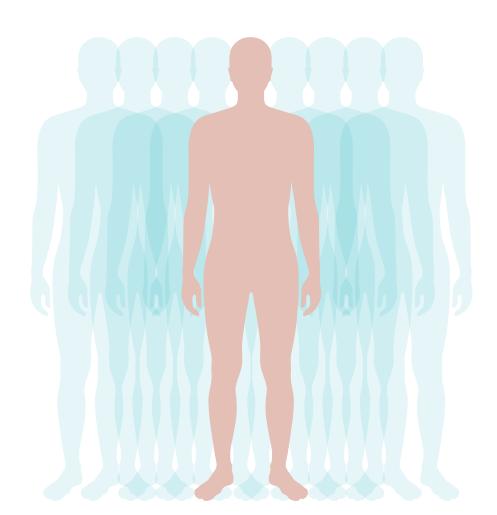
 Unmet need to reduce GC dose and improve related clinical outcomes

Normal or near normal adrenal

androgens

UNMET MEDICAL NEEDS ACCORDING TO DISEASE STATUS

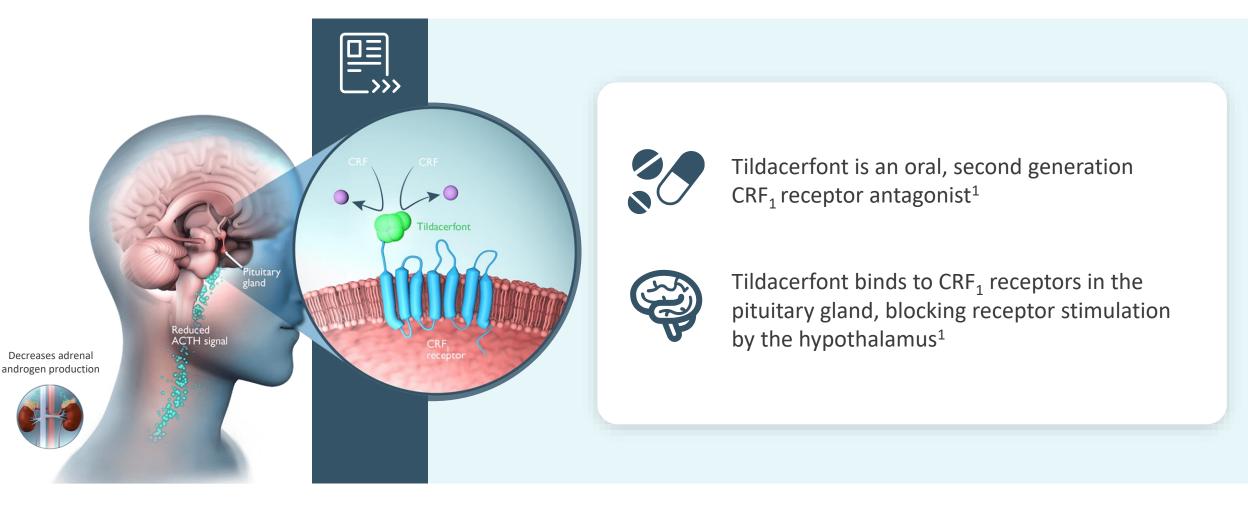
The management of classic CAH requires a balance between adrenal hormone suppression and GC replacement^{1,2}


POOR DISEASE CONTROL¹

- Elevated adrenal androgens
- Unmet need to reduce adrenal androgens and improve related clinical outcomes

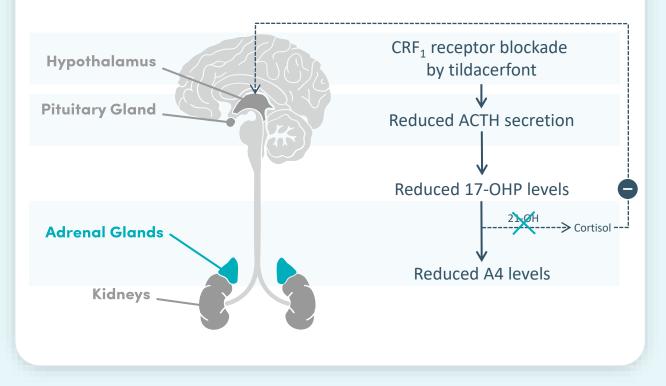
UNMET MEDICAL NEEDS IN THE CURRENT MANAGEMENT OF CLASSIC CAH

Glucocorticoids – the mainstay of treatment since the 1950s¹ – **contribute to the burden of disease**


Novel therapies are needed to reduce the need for supraphysiologic GCs

Tildacerfont

TILDACERFONT IS A NOVEL CRF₁ RECEPTOR ANTAGONIST



Tildacerfont inhibits excessive production of **ACTH**, **17-OHP** and **adrenal androgens**¹

By reducing excess adrenal androgens (e.g., A4), tildacerfont may improve CAH symptoms and allow **GC reduction** to near physiologic levels¹



17-OHP, 17-hydroxyprogesterone; 21-OH, 21-hydroxylase, A4, androstenedione; ACTH, adrenocorticotropic hormone; CAH, congenital adrenal hyperplasia; GC, glucocorticoid; CRF₁, corticotropin-releasing factor 1; HPA, hypothalamic-pituitary-adrenal.
1. Sarafoglou K, *et al. J Clin Endocrinol Metab.* 2021:dgab438. DOI: https://doi.org/10.1210/clinem/dgab438 [Epub ahead of print]; 2. Sarafoglou K, *et al. J Endocr Soc.* 2019; 3(Supplement 1):SUN-LB064.

TILDACERFONT IS A POTENT, HIGHLY SELECTIVE CRF₁ RECEPTOR ANTAGONIST

	Tildacerfont ^{1,2}	
Molecular formula	C ₂₀ H ₂₆ CIN₅OS	
Molecular weight	419.98 g/mol	
рКа*	0.85	
LogP	4.21	
Hygroscopicity (by DVS)	0.009% weight change from 5% to 95% RH	
Topological PSA	83.8 Ų	
PO availability	35.8%	

Tildacerfont selectivity²

In cell-based radioligand binding assays, tildacerfont displayed a **higher binding affinity** for the hCRF₁ vs. hCRF₂ receptor

	K _i (nM)		
Compound	hCRF ₁ receptor	hCRF ₂ receptor	
Tildacerfont	6.16	>1000	

Data are expressed as means (n=4).

Tildacerfont did not inhibit any clinically important target by >50% when tested at a concentration \sim 33,000-fold higher than the K_i for binding to the hCRF₁ receptor

Receptor binding potency²

In HEK293-cell membrane-based radioligand binding assays, tildacerfont exhibited **strong potency** for hCRF₁ receptors (K_i : 0.29 ± 0.04 nM)

Pharmacodynamic activity²

Tildacerfont inhibited CRF-stimulated cAMP accumulation in $hCRF_1$ receptor-expressing cells (K_b: 5.19 nM), demonstrating that tildacerfont functions as a potent $hCRF_1$ receptor antagonist

*As measured by UV.

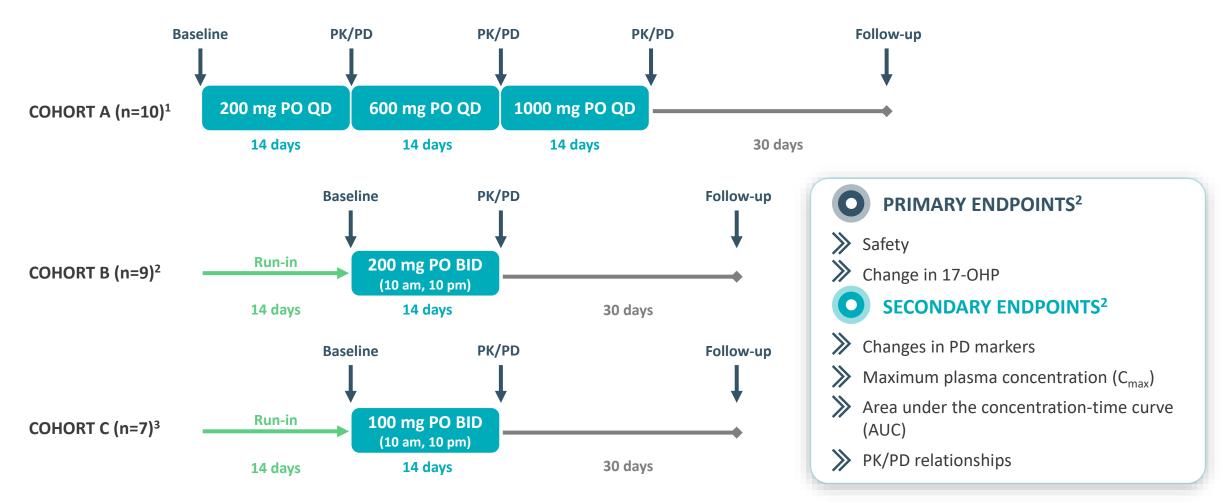
cAMP, cyclic adenosine monophosphate; CRF, corticotropin-releasing factor; DVS, dynamic vapor sorption; (h)CRF1, (human) corticotropin-releasing factor 1;

hCRF₂, human corticotropin-releasing factor 2; HEK, human embryonic kidney; K_b, binding constant; K_i, inhibitory constant; nM, nanomolar; pKa, acid dissociation constant; PO, oral; PSA, polar surface area; RH, relative humidity; UV, ultraviolet.

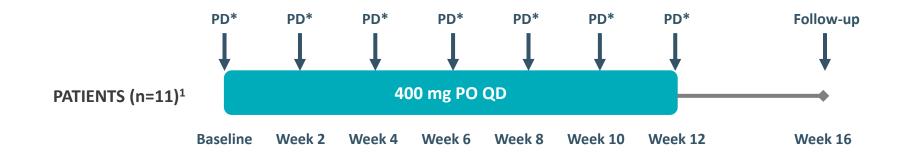
1. National Center for Biotechnology Information. PubChem Compound Summary or CID 134694266. https://pubchem.ncbi.nlm.nih.gov/compound/134694266. Accessed July 15, 2021;

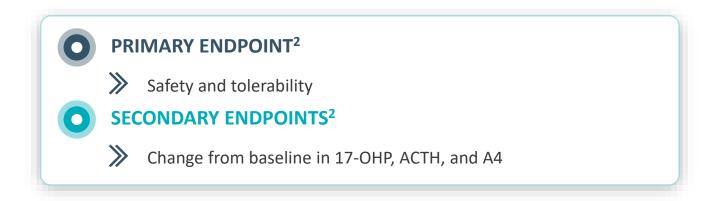
2. Spruce Biosciences, Inc. Investigator's Brochure for tildacerfont (SPR001), Edition 5.0, Dated 26 March 2021.

Phase 2 Adult Classic CAH Clinical Development Program


EIGHT CLINICAL STUDIES OF TILDACERFONT HAVE BEEN COMPLETED

SPR001-201: CLINICAL PROOF OF CONCEPT (PHASE 2 STUDY)^{1,2}


Phase 2, multicenter, open-label, multiple-dose, dose-escalation study¹



17-OHP, 17-hydroxyprogesterone; BID, twice daily; PD, pharmacodynamics; PK, pharmacokinetics; PO, oral administration; QD, once daily.
 Sarafoglou K, et al. *J Clin Endocrinol Metab.* 2021:dgab438. DOI: <u>https://doi.org/10.1210/clinem/dgab438</u> [Epub ahead of print];
 Clinical Trial NCT03257462. Available at: https://clinicaltrials.gov/ct2/show/NCT03257462 (last accessed July 2021).

SPR001-202: TWELVE-WEEK, OPEN-LABEL PHASE 2 STUDY^{1,2}

Phase 2, multicenter, open-label study¹

*Trial visits were conducted in the morning, at approximately 8 AM, prior to consumption of a morning GC dose at baseline (Day 1) and Weeks 2, 4, 6, 8, 10, and 12, and 30 days after the last dose. 17-OHP, 17-hydroxyprogesterone; A4, androstenedione; ACTH, adrenocorticotropic hormone; PD, pharmacodynamic profiles; PO, oral administration; QD, once daily.

1. Sarafoglou K, et al. J Clin Endocrinol Metab. 2021:dgab438. DOI: https://doi.org/10.1210/clinem/dgab438 [Epub ahead of print]; 2. Clinical Trial NCT03687242. Available at: https://clinicaltrials.gov/ct2/show/NCT03687242 (last accessed July 2021).

SPR001-202: ELIGIBILITY CRITERIA^{1,2}

INCLUSION CRITERIA

Patients previously enrolled in SPR001-201:*

Successful completion of SPR001-201, with a stable GC regimen for ≥12 weeks before SPR001-202 baseline¹

Tildacerfont-naïve patients:

~ —
~ —
~
~

Meets all inclusion criteria for SPR001-201¹

On a stable GC regimen for \geq 30 days before baseline that is expected to remain stable throughout the study²

EXCLUSION CRITERIA

Patients previously enrolled in SPR001-201:*

Experienced a **clinically significant AE** considered at least possibly related to tildacerfont in SPR001-201²

*If screening occurred >3 months after the subject's final follow-up visit for SPR001-201, 17-OHP was measured at screening and patients were screened for any clinically significant unstable medical condition, medically significant illness, or chronic disease occurring within 30 days of screening.²

AE, adverse event; GC, glucocorticoid.

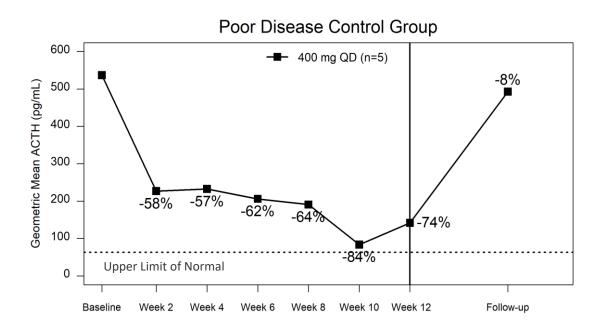
1. Sarafoglou K, et al. J Clin Endocrinol Metab. 2021:dgab438. DOI: https://doi.org/10.1210/clinem/dgab438 [Epub ahead of print];

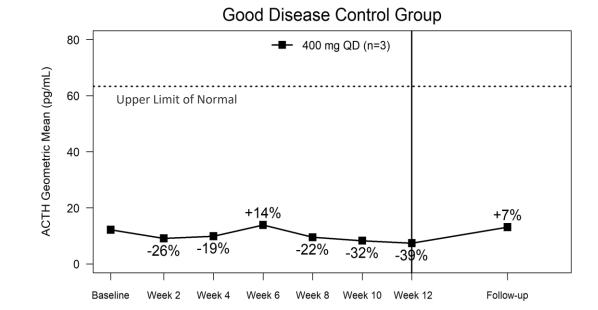
^{2.} Clinical Trial NCT03687242. Available at: https://clinicaltrials.gov/ct2/show/NCT03687242 (last accessed July 2021).

SPR001-202: PATIENT DEMOGRAPHICS AND BASELINE CHARACTERISTICS

Evaluable populations*	Good Disease Control (n=3*)	Poor Disease Control (n=5*)
Demographics		
Age (yrs), mean (SD)	48 (17.7)	42 (15.6)
Female sex, n (%)	3 (100)	2 (40)
White race, n (%)	3 (100)	4 (80)
BMI (kg/m ²⁾ , mean (SD)	35.5 (6.1)	27.8 (5.6)
Baseline glucocorticoid dose		
Mean HCe dose, mg (SD)	36.7 (11.6)	24.5 (11.5)
Glucocorticoid type		
Hydrocortisone, n (%)	0	2 (40)
Prednisolone family, n (%)	2 (67)	1 (20)
Combination [‡] , n (%)	1 (33)	2 (40)
Fludrocortisone use, n (%)	3 (100)	5 (100)
Baseline hormones (08:00 am)		
ACTH, pg/mL, geometric mean (CV%)	12.2 (584)	536.6 (109)
17-OHP, ng/dL, geometric mean (CV%)	314.1 (1069)	15323.3 (47)
A4, ng/dL, geometric mean (CV%)	28.8 (216)	1001.1 (48)

*Patients receiving dexamethasone (demonstrated by a post-hoc analysis to have the potential to confound efficacy assessments) were excluded from efficacy analyses but included in safety and pharmacokinetic analyses. ‡Combination therapy: combination of hydrocortisone and a member of the pred family.


17-OHP, 17-hydroxyprogesterone; A4, androstenedione; ACTH, adrenocorticotropic hormone; BMI, body-mass index; CV, coefficient of variation; HCe, hydrocortisone equivalents; SD, standard deviation. 1. Sarafoglou K, et al. *J Clin Endocrinol Metab*. 2021:dgab438. DOI: <u>https://doi.org/10.1210/clinem/dgab438</u> [Epub ahead of print].


SPR001-202: ROBUST REDUCTION IN ACTH IN POORLY CONTROLLED DISEASE

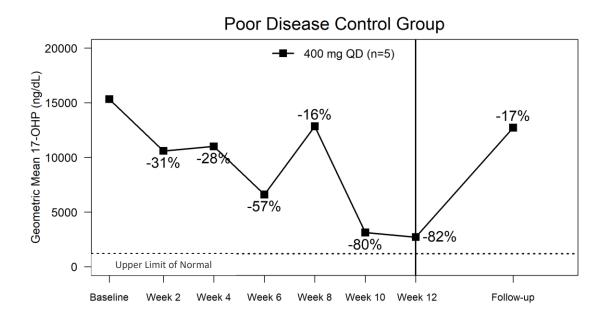
In the poor disease control group, a robust initial drop in ACTH was seen at week 2, followed by further reduction over 12 weeks; there was a maximum reduction in ACTH of **84%** at week 10 of the study in the poor disease control group

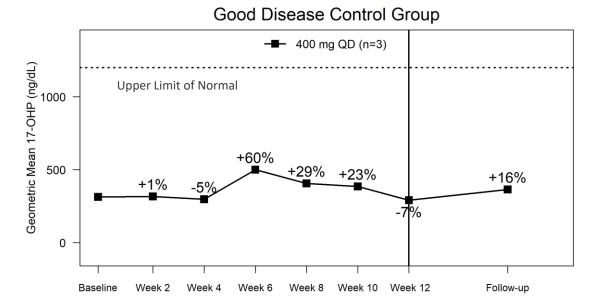
POOR DISEASE CONTROL

Normalization of ACTH achieved in 60% of patients^{*}

GOOD DISEASE CONTROL

No excessive suppression of adrenal function

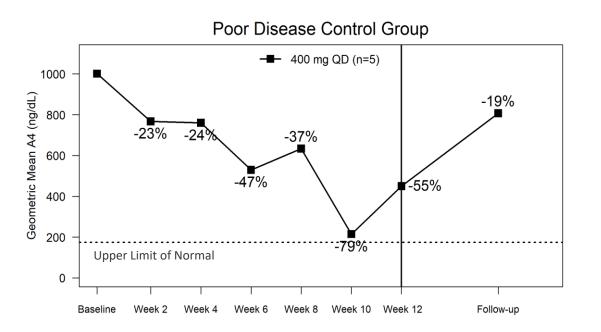

spruce BIOSCIENCES 40

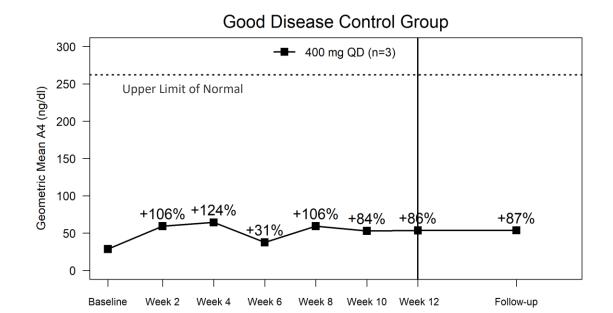

*One subject at week 2 prior to discontinuation from the trial and two patient during month 3. ACTH, adrenocorticotropic hormone; QD, once daily. Sarafoglou K, et al. *J Clin Endocrinol Metab.* 2021:dgab438. DOI: https://doi.org/10.1210/clinem/dgab438 [Epub ahead of print].

SPR001-202: SUSTAINED REDUCTION IN 17-OHP IN POORLY CONTROLLED DISEASE

In poor disease control group, an initial drop in 17-OHP was seen at week 2, followed by further reduction over 12 weeks; there was a maximum reduction in 17-OHP of **82% at week 12** of study in the poor disease control group

POOR DISEASE CONTROL


No excessive suppression of adrenal function


SPR001-202: SUSTAINED REDUCTION IN A4 IN POORLY CONTROLLED DISEASE

In poor disease control group, an initial drop in A4 was seen at week 2, followed by further reduction over 12 weeks; there was a maximum reduction in A4 of **79% at week 10** of study in the poor disease control group

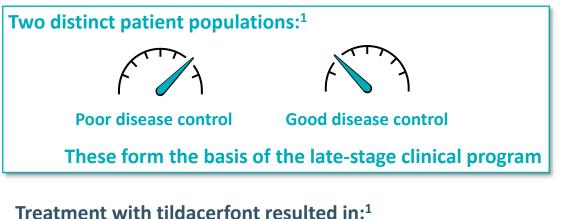
POOR DISEASE CONTROL

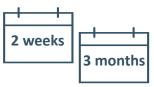
Normalization of A4 achieved in 40% of patients

GOOD DISEASE CONTROL

No excessive suppression of adrenal function

SPR001-202: TREATMENT-EMERGENT ADVERSE EVENTS


Preferred Term	400 mg QD (n=11)
Participants with at least one TEAE, n (%)	9 (81.8)
Upper respiratory tract infection	2 (18.2)
Hypothyroidism	1 (9.1)
Abdominal pain upper	1 (9.1)
Diarrhea	1 (9.1)
Nausea	1 (9.1)
Vomiting	1 (9.1)
Dysgeusia	1 (9.1)
Glycosylated hemoglobin increased	1 (9.1)
Hepatic enzyme increased	1 (9.1)
Nasopharyngitis	1 (9.1)
Pruritus	1 (9.1)
Pruritus generalized	1 (9.1)
Acne	1 (9.1)
Lacrimation increased	1 (9.1)
Contusion	1 (9.1)
Back pain	1 (9.1)
Headache	1 (9.1)
Insomnia	1 (9.1)


- Treatment with tildacerfont 400 mg QD for up to 12 weeks was generally well-tolerated
- No new TEAEs observed with longer dosing
- Most common SOC: gastrointestinal (diarrhea, nausea, vomiting) in 3 patients
- Most common AE: upper respiratory tract infection (n=2); both unrelated
- Majority of AEs were grade 1 and considered unrelated to treatment
- Discontinuation (n=1): Grade 2 itching without rash and was also found to have grade 1 liver elevation at next visit when subject discontinued the study
- No SAEs were observed

KEY FINDINGS FROM PHASE 1 AND 2 STUDIES: SUMMARY

Efficacy

Reduced adrenal androgens at2 weeks (Study 201) and 3 months (Study 202) in poor disease control patients

Robust reduction in ACTH at the **lowest dose studied** (200mg QD)¹

- No added benefit observed with higher or more frequent dosing
- Evidence of clinical outcome improvement (TART reduction)

Safety

Tildacerfont was generally well-tolerated in both:

Healthy adults²

People with CAH¹

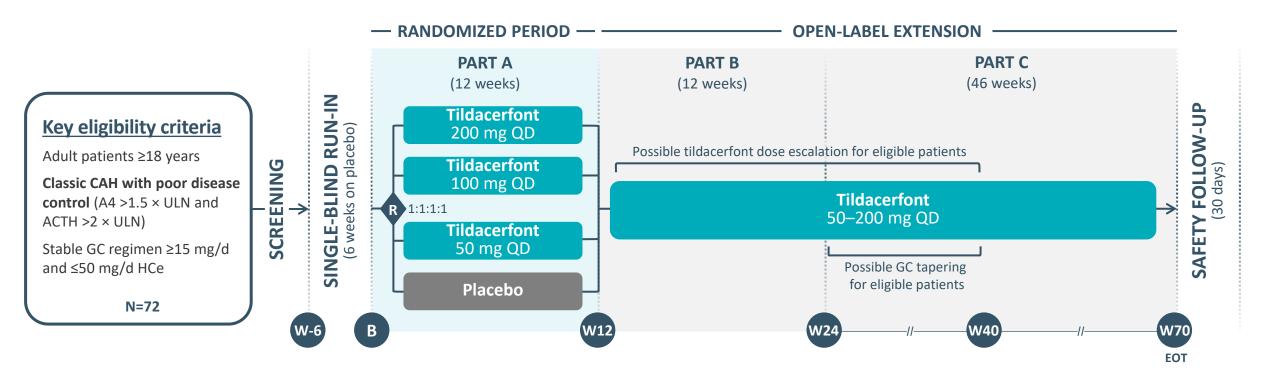
No drug-related SAEs reported to date^{1,2}

Tildacerfont is metabolized primarily by CYP3A4²

• Coadministration of drugs that are known strong inducers or inhibitors of CYP3A4 is prohibited^{1,2}

ACTH, adrenocorticotropic hormone; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CAH, congenital adrenal hyperplasia; QD, once daily; SAE, serious adverse event; TART, testicular adrenal rest tumor. Liver icon by Edwin PM, Noun Project.

ACTH



Late-Stage Adult Classic CAH CAHmelia Program

CAHmelia-203: ADRENAL ANDROGEN REDUCTION STUDY

A randomized, double-blind, placebo-controlled, dose-ranging Phase 2b study to evaluate the efficacy and safety of tildacerfont in adult patients with classic CAH

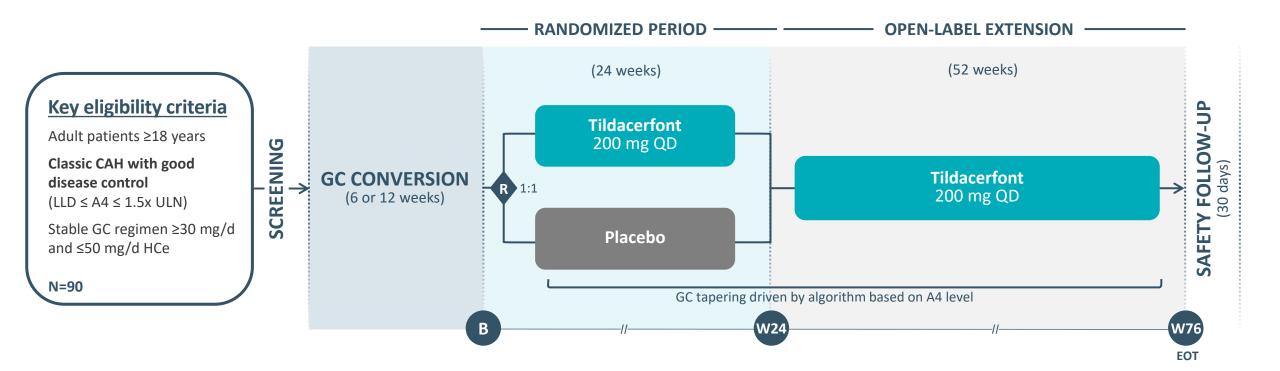
CAHmelia-203: STUDY ENDPOINTS

PRIMARY ENDPOINT

Percentage change in A4 from baseline to Week 12

SECONDARY ENDPOINTS

- >>> Percentage and absolute change from baseline to Week 12 in 17-OHP and ACTH
- Proportion of patients achieving normalization of ACTH, 17-OHP and A4
- Adverse events and serious adverse events


KEY EXPLORATORY ENDPOINTS

- Percentage and absolute change from baseline over full treatment period in ACTH, 17-OHP and A4
- >>> Proportion of patients achieving the normalization of ACTH, 17-OHP and A4 at end of treatment

CAHmelia-204: GC REDUCTION STUDY

A randomized, double-blind, placebo-controlled Phase 2b study to evaluate the efficacy and safety of tildacerfont in reducing supraphysiologic GC use in adult patients with classic CAH

PRIMARY ENDPOINT

Absolute change in GC dose (HCe) from baseline to Week 24

SECONDARY ENDPOINTS

- \gg Absolute change from baseline in GC dose (HCe) in mg/m² at Week 24
- Median total cumulative GC dose (HCe)
- >>> Change from baseline to Week 24 in metabolic parameters (fat mass [DXA], body weight, HOMA-IR)
- Adverse events and serious adverse events

KEY EXPLORATORY ENDPOINTS

- >> Proportion of patients with any reduction in GC dose
- Percentage and absolute change from baseline over full treatment period in ACTH, 17-OHP and A4
- >>> Change from baseline in QoL, clinical CAH symptoms, metabolic parameters, body composition, bone mineral density [DXA]), and TARTs in men

17-OHP, 17-hydroxyprogesterone; A4, androstenedione; ACTH, adrenocorticotropic hormone; BMI, body mass index; CAH, congenital adrenal hyperplasia; d, day; DXA, dual-energy X-ray absorptiometry; GC, glucocorticoid; HCe, hydrocortisone equivalent(s); HOMA-IR, homeostatic model assessment of insulin resistance; QoL, quality of life; TART, testicular adrenal rest tumor; ULN, upper limit of normal.

SECONDARY COMPOSITE ENDPOINTS

dose (HCe) at Week 24 in patients who

≤20 mg/d (HCe) at Week 24 in patients

Absolute change from baseline in GC

Proportion of patients with GC dose

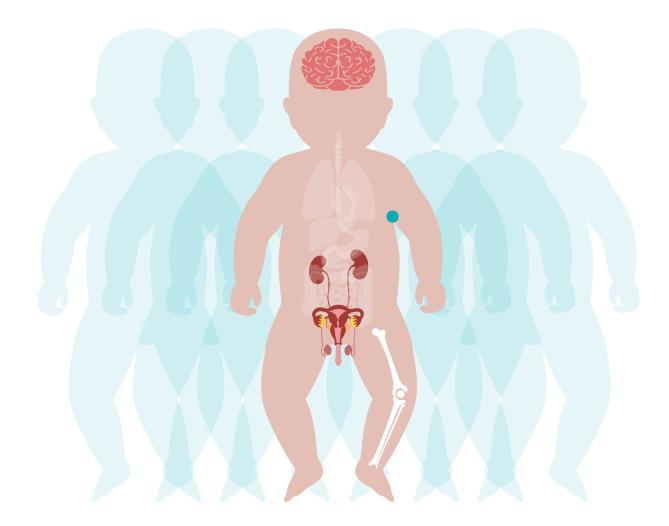
maintain A4 ≤ULN

who maintain A4 ≤ULN

KOL Panel Discussion

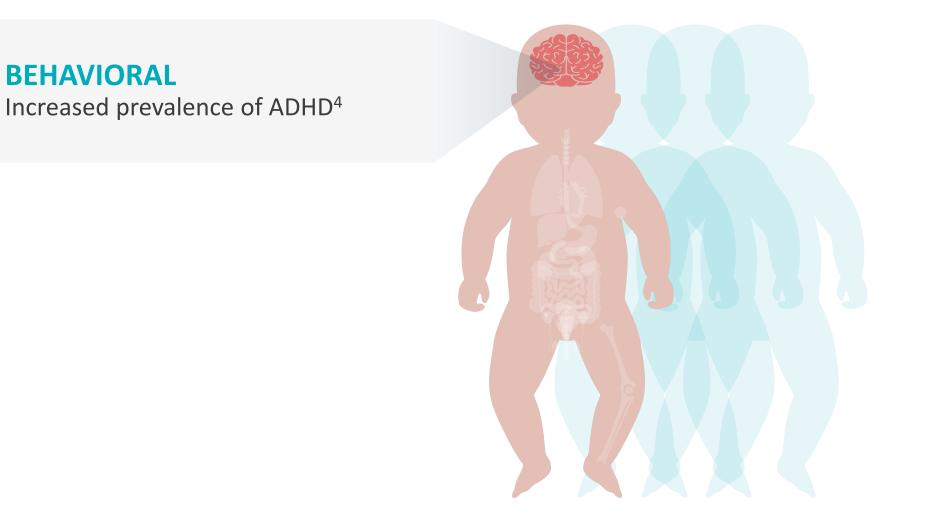
Paul Thornton, MD

Rosh Dias, MD, MRCP Moderator

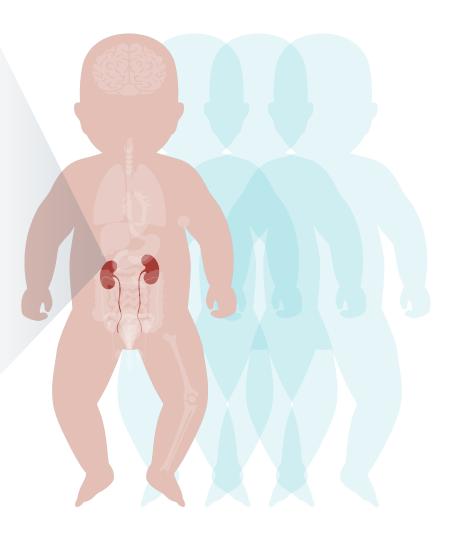


Richard Auchus, MD, PhD

TODAY'S PANELISTS


Pediatric Classic CAH Overview

CAH, congenital adrenal hyperplasia 1. Falhammer H, *et al. J Clin Endocrinol Metab*. 2014; 99: E2715-E2721; 2. Claahsen-van der Grinten H, *et al. Endocr Rev*. 2021;bnab016. DOI: <u>https://doi.org/10.1210/endrev/bnab016</u> [Epub ahead of print]; 3. Merke D, *et al. N Engl J Med*. 2020;383:1248-61; 4. Mueller S, *et al. Eur J Endocrinol*. 2010;163:801-10; 5. Claahsen-van der Grinten H, *et al. Best Pract Res Clin Endocrinol Metab*. 2009;23(2):209–20.


ADHD, attention deficit hyperactivity disorder; CAH, congenital adrenal hyperplasia.

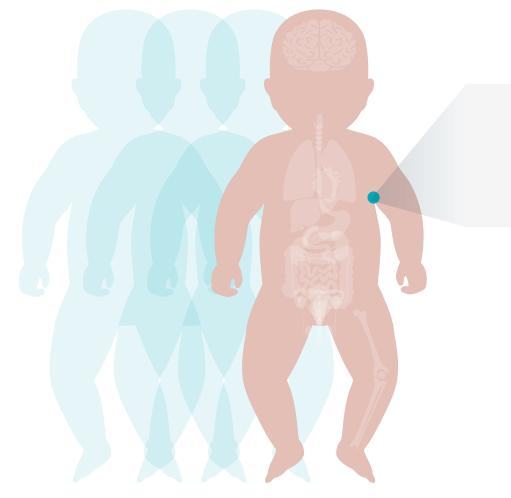
1. Falhammer H, et al. J Clin Endocrinol Metab. 2014; 99: E2715-E2721; 2. Claahsen-van der Grinten H, et al. Endocr Rev. 2021;bnab016. DOI: <u>https://doi.org/10.1210/endrev/bnab016</u> [Epub ahead of print]; 3. Merke D, et al. N Engl J Med. 2020;383:1248-61; 4. Mueller S, et al. Eur J Endocrinol. 2010;163:801-10; 5. Claahsen-van der Grinten H, et al. Best Pract Res Clin Endocrinol Metab. 2009;23(2):209–20.

ADRENAL (SALT-WASTING) CRISIS

- Leading cause of death in CAH¹
- Risk of potentially fatal electrolyte imbalances, acidosis, and shock begins at birth²
- Precipitated by acute illness, often infection³
- Life-threatening hypoglycemia with seizures is more common in children^{2,3}

CAH, congenital adrenal hyperplasia

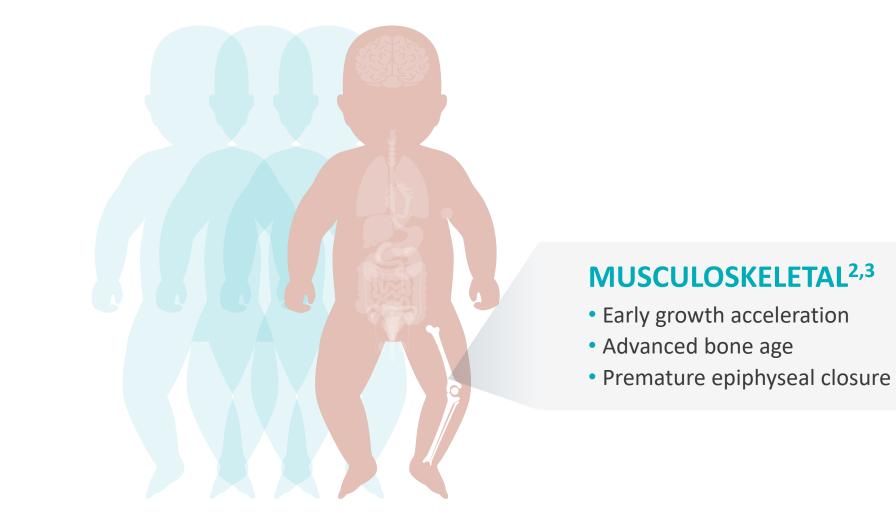
1. Falhammer H, *et al. J Clin Endocrinol Metab.* 2014; 99: E2715-E2721; 2. Claahsen-van der Grinten H, *et al. Endocr Rev.* 2021;bnab016. DOI: <u>https://doi.org/10.1210/endrev/bnab016</u> [Epub ahead of print]; 3. Merke D, *et al. N Engl J Med.* 2020;383:1248-61; 4. Mueller S, *et al. Eur J Endocrinol.* 2010;163:801-10; 5. Claahsen-van der Grinten H, *et al. Best Pract Res Clin Endocrinol Metab.* 2009;23(2):209–20.



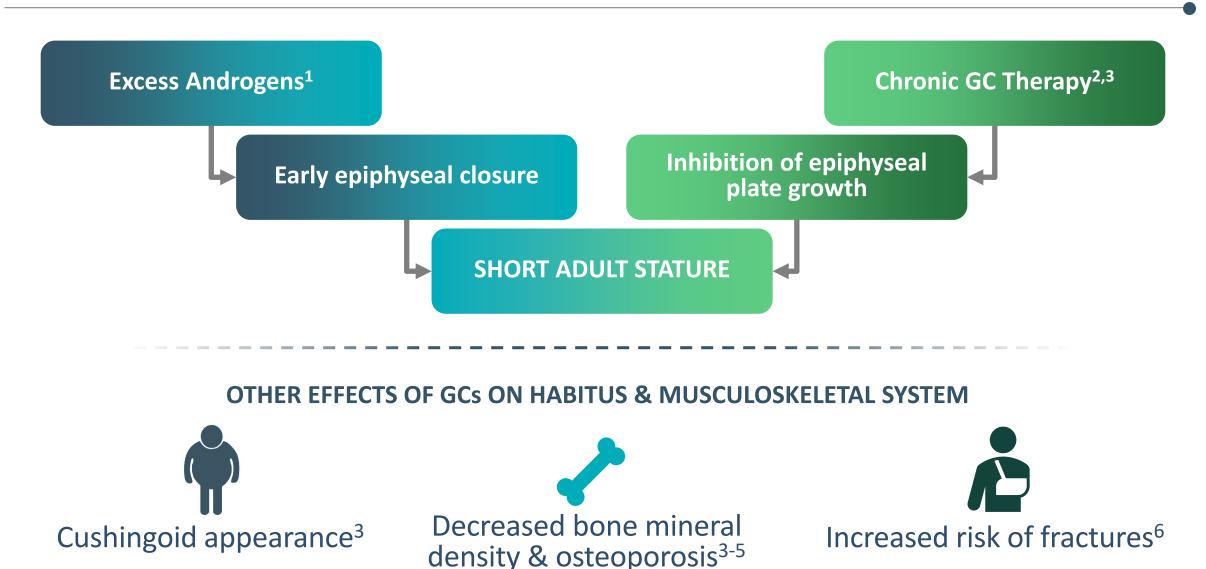
GENITOURINARY

- 46,XX genital atypia/sex misassignment at birth³
- 46,XY TARTs may begin in childhood⁵

CAH, congenital adrenal hyperplasia; TARTs, testicular adrenal rest tumors. 1. Falhammer H, *et al. J Clin Endocrinol Metab.* 2014; 99: E2715-E2721; 2. Claahsen-van der Grinten H, *et al. Endocr Rev.* 2021;bnab016. DOI: <u>https://doi.org/10.1210/endrev/bnab016</u> [Epub ahead of print]; 3. Merke D, *et al. N Engl J Med.* 2020;383:1248-61; 4. Mueller S, *et al. Eur J Endocrinol.* 2010;163:801-10; 5. Claahsen-van der Grinten H, *et al. Best Pract Res Clin Endocrinol Metab.* 2009;23(2):209–20.



PUBARCHE^{2,3}

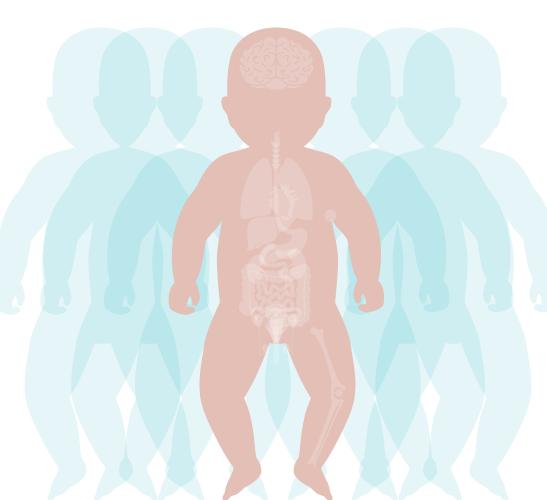

- Early childhood virilization
- Early onset adult body odor

SHORT STATURE IN CAH IS CAUSED BY ANDROGENS AND GCs

CAH, congenital adrenal hyperplasia; GC, glucocorticoid.

1. Merke D, et al. N Engl J Med. 2020;383:1248-61; 2. Lui J. Endocr Dev. 2011;20:187-93; 3. Claahsen-van der Grinten H, et al. Endocr Rev. 2021;bnab016. DOI: <u>https://doi.org/10.1210/endrev/bnab016</u> [Epub ahead of print];

4. Chakhtoura Z, et al. Eur J Endocrinol. 2008;158:879-87; 5. Falhammer H, et al. J Clin Endocrinol Metab. 2007;92:4643-9; 6. Hummel S, et al. Clin Endocrinol. 2016;0:1-8.

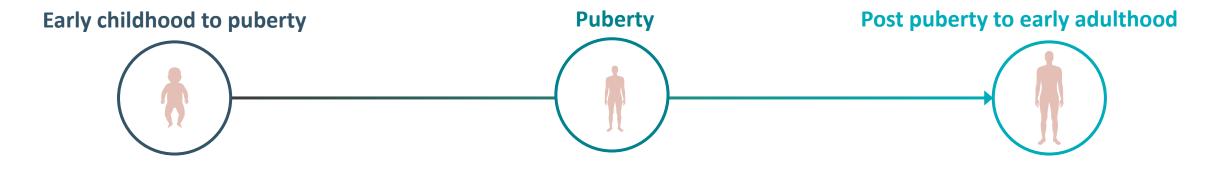


UNMET NEEDS IN PEDIATRIC CAH: STRATEGIES TO BALANCE ANDROGENS & GC DOSE

Balance between androgen levels and GC excess

is critical to avoid irreversible impacts on childhood development¹⁻³

Novel therapies are needed to reduce the need for supraphysiologic GCs


CAH, congenital adrenal hyperplasia; GC, glucocorticoid. 1. Claahsen-van der Grinten HL, *et al. Endocr Rev.* 2021;bnab016. DOI: <u>https://doi.org/10.1210/endrev/bnab016</u> [Epub ahead of print]; 2. Pijnenburg-Kleizen KJ, *et al. J Pediatr Endocrinol Metab.* 2019;32(10):1055–63; 3. Merke DP, *et al. N Engl J Med.* 2020;383:1248–61.

Phase 2 Pediatric Classic CAH Development Program

MANAGEMENT GOALS OF PEDIATRIC CAH VARY WITH AGE

Goal of therapy: Maximize androgen suppression for normal growth and pubertal development

Challenges:

GC overdose may cause iatrogenic Cushing syndrome

Strategies to achieve balance:

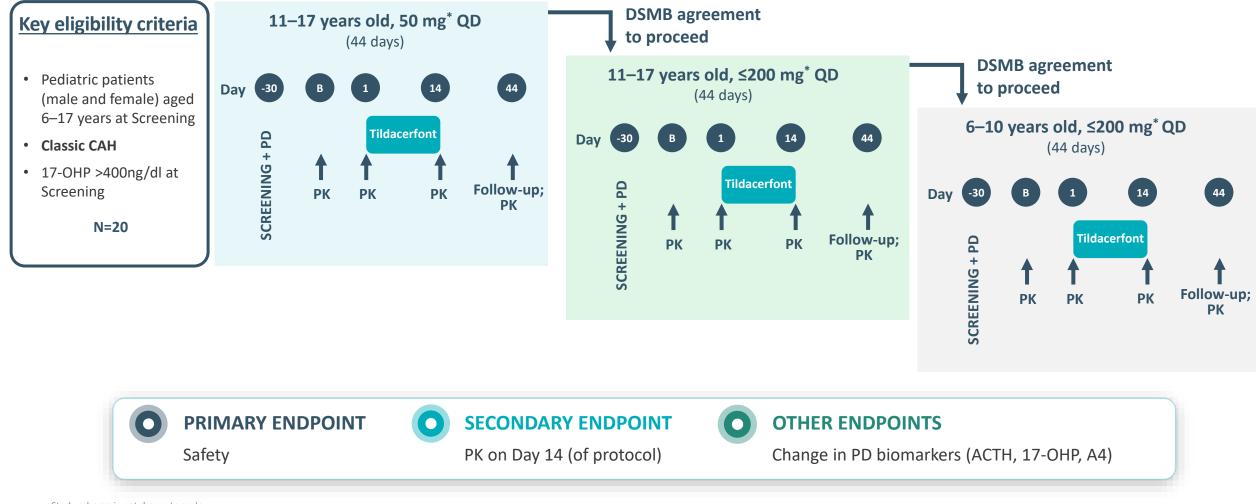
Use only short-acting GCs Avoid attempts to normalize 17-OHP levels **Goal of therapy:** Maintain adequate androgen suppression despite rapid HC metabolism in puberty

> **Challenges:** Higher GC doses are associated with shorter adult height

Strategies to achieve balance: Use GC doses >17 mg/m²/d with care Prioritize height over normalizing hormone levels

Goal of therapy: Prevent morbidity & mortality from adrenal crisis, preserve fertility

Challenges:


MC requirements vary through adolescence Medical needs vary by sex and gender

Strategies to achieve balance:

Continue GC & MC at transition to adulthood Refer to multidisciplinary transition clinics

PHASE 2 STUDY IN PEDIATRIC CAH: TO BE INITIATED IN 2021

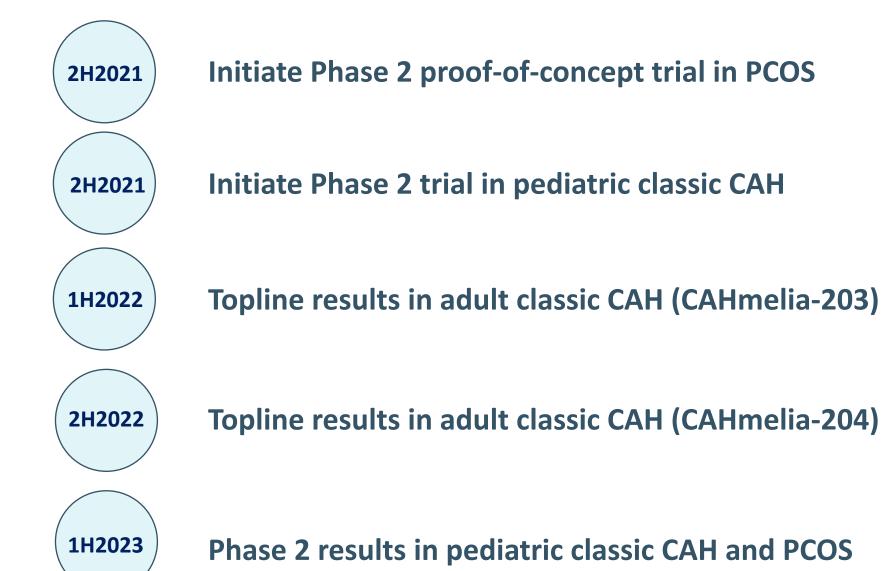
SpruceBIOSCIENCES

63

Study schema is not drawn to scale.

*Weight-based dosing at adult/effective dose equivalents.

17-OHP, 17-hydroxyprogesterone; A4, androstenedione; ACTH, adrenocorticotropic hormone; B, baseline; CAH, congenital adrenal hyperplasia; DSMB, Data Safety and Monitoring Board; GC, glucocorticoid;


HCe, hydrocortisone equivalent(s); PD, pharmacodynamics; PK, pharmacokinetics; QD, once daily.

Spruce Biosciences. Data on file.

Concluding Remarks

KEY ANTICIPATED MILESTONES

INVESTMENT HIGHLIGHTS

Tildacerfont poised to transform treatment paradigm in classic CAH	Two late-stage clinical studies initiated; Data expected in 2022. NDA filing in adult classic CAH targeted for 2023
Multiple expansion opportunities	Initiation of Phase 2 programs in pediatric classic CAH and polycystic ovary syndrome (PCOS) in 2H 2021
Significant commercial opportunity	~\$3B+ worldwide market opportunity in classic CAH
Strong IP protection	Comprehensive IP portfolio based on issued patents provides exclusivity to 2038 in U.S. combined with Orphan Drug Designation in U.S. and Europe
h	Management has contributed to development and commercial launch of 40 products, including within endocrine and rare disease space

Focused on developing and commercializing novel therapies for rare endocrine disorders with significant unmet medical need